

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

Improving Multi Task Running Time in Two Column Boundary

Allocation Method in Mesh-based Chip Multiprocessors Using

Combined Migration Mechanisms

Akram Reza
1*

, Mahnaz Rafie

Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University
1
,

Department of Computer Engineering, Ramhormoz Branch, Islamic Azad University
2
,

 Tehran
1
, Ramhormoz

2

 Iran
1,2

A.reza@qodsiau.ac.ir
1
, mahnaz.rafie@gmail.com

2

Keywords: Fragmentation, Processor Allocation, Processor Migration, Two Column Boundary (TCB).

1. Introduction

Multicomputer parallel computer systems are

cost-effective alternatives of the traditional

supercomputers [1]. The interconnection of

multi-computers come in different styles called

topologies. The two-dimensional (2D) mesh-

based topology is probably the most common

topology because it is simple, regular and

scalable. Several recent commercial and

experimental parallel computers have been built

based this architecture such as the IBM Blue

Gene/L and the Intel Paragon [2-4].

Abstract:- In this paper, a calculation algorithm, a processor allocation mechanism and a migration

method for NoC-based multiprocessors is presented. Calculation algorithm is used for calculating the

appropriate size of sub-mesh for input task to increase continuity in multiprocessors. Processor

allocation aims to allocate the processing nodes to different tasks of an input application at run time.

Indeed, we employ the idea of using migration to minimize fragmentation of the tasks. In this process

three key metrics are considered. They are average execution time, average response time, and average

wait time. In fact, we perform rigorous simulation experiments to quantify all our proposed schemes

and compare them against standard methods. Thus, we make clear recommendations on the choice of

the strategies.

Manuscript received 30 March 2015; revised 24 May 2015; accepted 1 July 2015

http://www.ijocit.ir/
http://www.ijocit.org/
mailto:A.reza@qodsiau.ac.ir
mailto:mahnaz.rafie@gmail.com

© 2015, IJOCIT All Rights Reserved Page 744

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

Processor allocation in 2D-Mesh multicomputer

is a major issue as it significantly affects the

performance of any parallel system [2]. It is

concerned with the way for allocation sub-mesh

to a job request. Indeed, processor allocation

strategies are divided into two categories:

contiguous and non-contiguous. In contiguous

allocation, jobs are allocated distinct contiguous

processor sub-meshes for the duration of their

execution. Contiguous allocation suffers from

processor fragmentation [4-8]. It should be noted

that processor fragmentation can be classified

into internal and external fragmentation. Internal

fragmentation occurs when more processors are

allocated to a job than it requires [1, 3, 5, 8-9].

When a job is assigned more processors than it

requires, the extra allocated processors are not

used for actual computation, instead they are

wasted. External fragmentation occurs when a

sufficient number of processors are available to

satisfy a request, but they cannot be allocated

because they are not contiguous [9]. A lot of

research has been carried out to solve the

problem of processor fragmentation. For

example, non-contiguous allocation has been

considered [3, 7, 9-10]. In this allocation

strategy, a job can be executed on multiple

disjoint sub-meshes rather than waiting until a

single sub-mesh of the requested size and shape

becomes available [9, 11]. Studies show that

non-contiguous allocation of requests may solve

the drawbacks of contiguous allocation and

eliminate fragmentation. However, since

communication between processors running the

same job can be indirect due to non-contiguity

[12], communication latency is usually high.

In this article, for the online mapping the

following steps have been done:

The first step is to find the appropriate size of

sub-mesh for input task. The second step is to

find a sub-mesh place in integrating the mesh for

online task allocation. In addition, the task

migration has been continuously used to solve

external fragmentation in allocation. The third

step is to find a main place in sub-mesh for

online task mapping. In order to reduce the

overhead time of online mapping, second and

third steps must be performed simultaneously.

These steps will be discussed in the next

sections. In fact, this paper is organized in four

sections. The second section includes previous

studies related to the processor allocation

algorithms in mesh networks. In a review of

literature, studies conducted on improvement in

efficiency of allocation and migration algorithms

will be investigated and the manner of these

algorithms performances will be summarized.

The third section includes implementation of

proposed algorithm. The fourth section

concludes of this paper and discusses about

future work.

2. Review of literature

Definitions and methods of continuous allocation

and task migration used for multi-computers

mesh networks have been reviewed in this

section.

2.1 Definitions

A two-dimensional mesh M (w, h) is a rectangle

of nodes with dimensions of w × h where w is

width and h is the height of the rectangle. Each

node of mesh is a processor that is known with

the address of its characteristics [13]. A node in

column c and row r has the coordinate of <c, r>

where 𝟎 ≤ c < 𝒘 and 𝟎 ≤ r < 𝒉. Node <i , 𝑗> that

© 2015, IJOCIT All Rights Reserved Page 745

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

is not in borderlines of mesh approximates and

connects directly with other four nodes: <𝑖 ± 1>,

𝑗 and 𝑖, 𝑗±1 so that 0<𝑖<𝑤−1 and 0<𝑗<ℎ−1. In

borderlines, each node approximates and

connects to other two or three nodes according to

its situation.

Definition 2-1-1: two-dimensional sub-mesh S

(c, r) in the mesh M (w, h) is a sub-mesh M (c, r)

that 0 ≤ c ≤ 𝑤 and 0 ≤ r ≤ ℎ. When a task

requests a sub-mesh with dimensions c × r, this

task is expressed via T (c, r). Address for sub-

mesh S is known by its end and base node that is

a four-parameters variable as <𝑥b , 𝑦b , 𝑥e , 𝑦e>

where, < 𝑥b , 𝑦b > shows the lower left corner

and <𝑥e, 𝑦e> shows the upper right corner of sub-

mesh S. It is clear that c = 𝑥e – 𝑥b + 1 and r = 𝑦e

– 𝑦b + 1 and base node of sub-mesh, is <xb , 𝑦b>

and the sub-mesh area is the number of nodes

inside it that is equal to c×r.

Definition 2-1-2: Busy sub-mesh 𝛽 is a sub-mesh

that all its nodes are assigned to a task at that

moment. A set of busy sub-meshes B is the set

that set includes all the busy sub-meshes

available in the mesh that is called busy list. For

example, in figure (1), three busy sub-meshes

exist in the mesh M (6, 6); therefore, 𝐵 = {𝛽1,

𝛽2, 𝛽3} where 𝛽1 = <0,0,1,3> , 𝛽2 = <0,4,2,5>,

𝛽3=< 2,0,3,1> are the members of this set.

Definition 2-1-3:Coverage sub-mesh for busy

sub-mesh 𝛽 is expressed according to the input T

that is a sub-mesh that none of its nodes can be

selected as the basis node of a free sub-mesh for

allocation to task T with respect to busy sub-

mesh 𝜗β,T. Coverage sub-mesh 𝜗β,T is equal to

<𝑥𝑐s , 𝑦𝑐s , 𝑥e , 𝑦e> for 𝛽<𝑥b , 𝑦b , 𝑥e , 𝑦e> and the

task 𝛽 where, 𝑥𝑐s = max⁡(0, 𝑥b − c+1) and 𝑦𝑐s

= max⁡(0, 𝑦b − r + 1). A according to the input

task T, coverage set ∁ST is a collection of

coverage sub-meshes for the task T where, ∁ST=

{ϑβ,T|β ∈ B}. For example, for the input task T

(3,4) in figure (1), we have: 𝜗𝛽1,𝑇 = <0,0,1,3>،

𝜗𝛽2,𝑇 = <0,0,2,5>، 𝜗𝛽3,𝑇 = <0,0,3,1> ،∁ST=

{<0,0,1,3> , <0,0,2,5> , <0,0,3,1>}

Definition 2-1-4: According to the input task T,

reject 𝛿𝑇 sub-mesh is a sub-mesh including some

processors that is a sub-mesh that none of its

processors can be regarded as the basis node of a

free sub-mesh for allocation to task T with

respect to its dimensions. There are two reject

sub-meshes for each T: horizontal (𝛿𝑇𝐻) and

(𝛿𝑇𝑉) vertical. It is simple to calculate them i.e.

𝛿𝑇𝑉 = <r′, 0, 𝑤, ℎ> and 𝛿𝑇𝐻 = <0, c′, 𝑤, ℎ> and

r′ = 𝑤 - c + 1 𝑎𝑛𝑑 c′ = ℎ - r + 1 where, 𝑤 × ℎ is

sub-mesh size. A set of reject sub-meshes Δ𝑇 is

calculated by adding 𝛿𝑇𝐻 and 𝛿𝑇𝑉. For example,

𝛿𝑇𝐻 = <0,3,5,5> and 𝛿𝑇𝑉 = <4,0,5,5> in figure

(1).

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

Figure 1: An Example of Allocation for T (3, 4)

2.2. Processor Allocation

Processor allocation in 2D-Mesh multicomputer

is a major issue as it significantly affects the

performance of any parallel system [1]. Also,

contiguous allocation strategies attempt to locate

a contiguous portion of the computing units for

the execution of a parallel job. Indeed, most

previous studies have been focused on reducing

the negative effects of fragmentation of

processors on the system efficiency due to the

continuous allocation. Hereinafter, contiguous

processor allocation schemes include a wide

range of methods such as stack-based allocation

[14, 15], adjacency allocation [15], adaptive scan

allocation [13], and best/first fit allocation [16,

17]. In this article, improved stack based

allocation algorithm was used to compare the

speed of the proposed allocation method.

2.2.1. Improved Stack Based Allocation

(ISBA)

Improvement of Stack Based Algorithm includes

Rotation optimization and Task separation

techniques. In fact, it uses manipulating of job

orientation to obtain complete sub-mesh

recognition ability. However, when job J(p,q)

has both p and q sizes equal (p=q) there is no

need to change job orientation. Using stack as a

storage for candidate blocks, algorithm returns

first found base block as a result. In [18], three

allocation algorithms are compared: SBA, ISBA

and Frame Sliding Algorithm (FS). Moreover,

Simulation results show that ISBA is more

efficient in most cases in comparison with the

other algorithms.

2.3. Task Migration

Task migration problem has also been widely

studied in the literature [19-21]. An important

issue in task migration is minimizing the

collision between migration traffic and the

normal traffic generated by the applications [22].

In this section, a few task migration algorithms

that are used in mesh multi-computers will be

described. Methods like General Task Migration

Scheme (G-TMS) and Near-Optimal Task

Migration Scheme (NOTMS) try to minimize the

traffic collision between the migration packets

and the normal application packets and also

among different migration packets in a

wormhole switched multi-computer by sending

http://www.ijocit.ir/
http://www.ijocit.org/

© 2015, IJOCIT All Rights Reserved Page 747

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

the migration data in a multi-phase procedure

[23]. In [24], a diagonal scheme is proposed. The

contribution of this algorithm is finding separate

ways to move a task from the source sub-mesh to

the destination sub-mesh on the basis of the X-Y

routing. In [25], two strategies are presented.

They are Online Dynamic Compaction-Single

Corner (ODC-SC) and Online Dynamic

Compaction-Four Corner (ODC-FC). The ODC-

SC tries to find the destination to move a sub-

mesh in such a way that a larger free fragment of

processors are obtained. Indeed, ODC-FC is

more optimized version of ODC-SC that gives a

larger region of adjacent free nodes by more

selectively moving the tasks. Also, these

methods prevent external fragmentation in the

system. By this method, there will be a larger

contiguous area of free nodes after migration as

compared to the previous schemes. Really,

experiments show that this strategy is

particularly useful in yielding better

performance. It should be noted that the ODC-

FC scheme moves the tasks towards all four

corners of the mesh so as to produce a larger

contiguous space of free nodes in the centre of

the mesh. This strategy is illustrated in figure 2.

Figure 2: ODC-FC Migration Algorithm

2.4. Simulation Output Interpretation

There are three parameters used in our

discussion. They are Mean Task Response Time

(MTRT), Mean Task Execution Time (MTET),

and Mean Task Waiting Time (MTWT). MTRT

is the time from the submission of request until

the first real response produced for tasks [17,

26]. MTET is the time from the allocation of the

task’s request until the moment the parallel task

finishes execution [26]. MTWT is the time

interval between the instant when a task arrives

and when it is allocated [27].

3. Overview of the Proposed

Approach

Three steps are considered in the proposed

method as follows:

3.1. Calculation of the Appropriate

Size of Sub Mesh for Input Task

 The following algorithm can be considered to

calculate the appropriate size of sub-mesh in

continuous allocation:

3.1.1. Decrease Loss by Minimum

Diameter (MD)

The minimum diameter is considered in this

method. For example if core count is equal to

nine, the sub mesh has three rows and three

columns by this method. The algorithm is shown

in Figure 3.

Based on number of cores needed for job

Make array of right products of core count as row and column

Find one element of array with min row and column

Return (row, column);

Figure 3: MD Algorithm

© 2015, IJOCIT All Rights Reserved Page 748

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

3.2. Proposed Task Allocation

Method

3.2.1. Two Column Boundary (TCB)

Allocation Algorithm

In this strategy, selection of end node is

different. It is calculated base on the base node

and task size (p×q). It is shown by equation (4).

qybasenodeyendnode

pxbasenodexendnode

ii

ii





..

..

 (4)

In this method, if there is more than one base

node, a sub-mesh will be selected that its base

node has minimum distance from the left and

right points of mesh as well as minimum free

connectivity. Equation 4, 5 are used to calculate

the base and end nodes’ distance of a sub-mesh

from boundaries. The mesh size is considered

m×n.

).minmin(.

).,.min(.min

..

0..

i

iii

ii

ii

dalldm

xexbd

xendnodemxe

xbasenodexb









 (5)

In this way the allocation of free nodes are kept

in the middle of the mesh which is shown in

figure 4. Thus, the problem of external

fragmentation can be minimized.

Figure 4: TCB Allocation Algorithm

The proposed TCB allocation algorithm is

organized as figure 5.

TCB Allocation Algorithm

If (number of free nodes less than needed nodes)

 Job must be waiting

else

Create CJ with respect to J (p,q) and

J(q,p) based on busy list and create

RJ

Create base node list based on (mesh

– (CJ υ RJ))

end if

If (numbers of based node == 0) then

 Job must be waiting

else if (numbers of based node == 1)then

 Allocate job on available base node

else

 Select base node with min diameter and min

F.C

end if

Figure 5: Pseudo Code of the TCB Allocation

Algorithm

3.3. Proposed Task Migration

Method

In most previous studies, they have focused on

reducing the effects of external fragmentation

that are caused by the contiguous allocation

strategies. In fact, external fragmentation occurs

when the number of free nodes exceeds the

number of nodes required for task, but no base

node can be obtained for it [9]. To solve this

problem the migration algorithms have been

proposed.

© 2015, IJOCIT All Rights Reserved Page 749

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

3.3.1. Two Column Boundary (TCB)

Migration Algorithm

The main goal of the migration algorithms is to

determine the migration destination for sub-

mesh. In this strategy, sub-meshes are displaced

to the nearest boundary of left and right of the

mesh. In this algorithm, at first, the distance

from the nearest boundary of left and right of the

mesh is calculated for all sub-meshes. Afterward,

the minimum distance as the closest interval to

the border for that sub-mesh is considered. Then,

the sub mesh with minimum distance and non

zero amount of free connections of the base or

end node is selected as the final sub mesh for

migration. Finally, the sub-mesh should be

moved to the nearest border of the columns of

the mesh so that the free nodes will be among the

mesh which is shown in Figure 6.

Figure 6: Two Column Boundary

3.3.2. Combinations of TCB and

ODC-FC Migration Algorithms

This strategy has the benefits of the both TCB

and ODC-FC migration algorithms. Really, in

each iteration one of the algorithms is executed.

For example if the number of migrations is equal

to thirty, the TCB and ODC-FC algorithms will

be run fifteen times.

3.4. Task Mapping

After determining the mesh size for allocation,

mapping algorithm and allocation algorithm can

be run simultaneously. In this case, based on the

output of the allocation function that is

coordinates of the base node, and using the

output of mapping function that is the

coordinates of mapping nodes, the position of

each nodes on the mesh can be achieved.

It is sufficient to sum the coordinate of each

mapping function of output node with the

coordinate of base node to gain real coordinate

node of the mesh. After mapping task on the

selected nodes of sub-mesh, the given task starts

to run. The task will be put on a waiting list if

the allocation function fails to allocate sub-mesh

to input task, (low number of free nodes or

external fragmentation problem). The output of

the mapping algorithm is stored in the memory

to use sub-mesh allocated to the given task. In

this step, each mapping function can be used

which in this paper random mapping function is

used.

3.5. Simulation Results

For evaluation the proposed algorithm, we

implement OM-simulator developed by C#. This

simulator has three phase of online mapping.

They are allocation, migration (in non-

preemptive allocation) and mapping. Simulator

configuration is based on task parameter (task

type, task size, task lifetime and task arrival

time), network parameter (network size,

communication rate), number of task and total

time of the simulation. Also, simulation

configuration is shown in table 1. Indeed, the

proposed algorithm has been compared with

similar known methods. In the first phase, TCB

strategy has been compared with the ISBA

© 2015, IJOCIT All Rights Reserved Page 750

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

allocation mechanism. In the second phase, TCB

migration algorithm and combinations of the

TCB and ODC-FC methods has been compared

with the ODC-FC migration algorithm. In

addition, different random tasks of random size,

time of arrival and the processing time is

considered. It should be noted that the same

traffic applied to all simulation conditions. As

can be seen in Figure 7, MD / TCB /

combinations of the TCB and ODC-FC

(Dimensions of sub mesh / allocation /

migration) method has relatively low average

task execution time.

Table 1: Simulation Configuration, OM Simulator

Simulation Parameter Value

NoC size 16×16

Communication rate 1 to 1000 bit/s

task type Video & media

task size Random between 9 to 32 core

task lifetime Random between 100,000 and 1000,000

task arrival time Random between 0 and 300,000

Total time of the simulation 20 million cycles

Number of tasks Random between 50 and 200

© 2015, IJOCIT All Rights Reserved Page 751

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

Figure 7: Average Execution Time for Tasks Considering Different Dimensions of Sub Mesh/Allocation/Migration

Scheme

Average task response time for traffic patterns

that mentioned above is displayed in figure 8. As

can be seen in this graph, MD / TCB /

combinations of the TCB and ODC-FC has the

lowest average response time compared to other

designs. Indeed, the minimum value of the

average response time for TCB/complex

algorithm is zero.

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

Figure 8: Average Response Time for Tasks Considering Different Dimensions of Sub Mesh/Allocation/Migration

Scheme

The average waiting time for all online mapping

plans to input tasks on the mesh topology with

network size of 16 × 16 is shown in figure 9. As

can be seen the MD / TCB / combinations of the

TCB and ODC-FC has the least waiting time.

Figure 9: Average Wait Time for Tasks Considering Different Dimensions of Sub Mesh/Allocation/Migration Scheme

http://www.ijocit.ir/
http://www.ijocit.org/

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

It should be noted that the minimum amount of

the average wait time for TCB/ODC-FC,

TCB/TCB and TCB/complex algorithms is zero

which are not shown in figure 9.

4. Conclusion

The concepts of the dimensions of sub mesh,

allocation, and migration are considered in the

proposed algorithm. Dimensions of sub mesh

are considered by MD methodology. The

proposed allocation mechanism is TCB. And

the proposed migration algorithm is

combinations of the TCB and ODC-FC. It

should be noted that the proposed mechanism

has been compared with similar known

algorithms. They are ISBA allocation

algorithm, and ODC-FC migration method.

Also, three parameters are analyzed. They are

average execution time, average response time

and average waiting time. Results of

simulation show that MD / TCB /

combinations of the TCB and ODC-FC

(Dimensions of sub mesh / allocation /

migration) method with respect to these three

parameters have better performance.

5. References

[1] C.-Y. Chang and P. Mohapatra,

"Performance improvement of allocation

schemes for mesh-connected computers", (1998),

In Proceedings of the Journal of Parallel and

Distributed Computing, Vol. 52, No. 1, pp. 40-

68.

[2] I. Ababneh, “An efficient free-list submesh

allocation scheme for two-dimensional mesh-

connected multicomputers”, (2006), In

Proceedings of the Journal of Systems and

Software, Vol. 79, No. 8, Elsevier Science Inc. ,

New York, NY, USA, August, pp. 1168-1179.

[3] S. Bani-Mohammad, M. Ould-Khaoua, I.

Ababneh, and L. Machenzie, “Non-contiguous

Processor Allocation Strategy for 2D Mesh

Connected Multicomputers Based on Sub-

meshes Available for Allocation”, (2006), In

Proceedings of the 12th International Conference

on Parallel and Distributed Systems

(ICPADS’06), Vol. 2, IEEE Computer Society

Press, USA, pp. 41-48.

[4] S. Bani-Mohammad, M. Ould-Khaoua, I.

Ababneh, and L. Machenzie, “A Fast and

Efficient Processor Allocation Strategy which

Combines a Contiguous and Non-contiguous

Processor Allocation Algorithms”, (2007),

Technical Report; TR-2007-229, DCS Technical

Report Series, Department of Computing

Science, University of Glasgow.

[5] K. Windisch, V. Lo, and B. Bose,

"Contiguous and non-contiguous processor

allocation algorithms for k-ary n-cubes", (1995),

Technical Report, University of Oregon, Oregon,

USA.

[6] ProcSimity V4.3 User’s Manual, University

of Oregon, (1997).

[7] S. Bani-Mohammad, Efficient Processor

Allocation Strategies for Mesh-Connected

Multicomputers, (2008), PhD Thesis, The

Faculty of Information and Mathematical

Sciences University of Glasgow, Glasgow, U.K.

[8] S. Bani-Mohammad, M. Ould-Khaoua, I.

Ababneh, and L. Mackenzie, "Comparative

evaluation of contiguous allocation strategies on

3D mesh multicomputers", (2009), In

http://www.ijocit.ir/
http://www.ijocit.org/

© 2015, IJOCIT All Rights Reserved Page 754

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

Proceedings of the Journal of Systems and

Software, Vol. 82, No. 2, pp. 307-318.

[9] K. Windisch, V. Lo, and B. Bose, "Non-

contiguous processor allocation algorithms for

mesh-connected multicomputers", (1997), In

Proceedings of the IEEE Transactions on

Parallel and Distributed Systems, Vol. 8, No. 7,

pp. 712-726.

[10] D. Bunde, V. J. Leung and J. Mache,

"Communication patterns and allocation

strategies", (2004), Sandia Technical Report

SAND2003-4522.

[11] V. Adve and M. Vernon, "Performance

analysis of mesh interconnection networks with

deterministic routing", (1994), In Proceedings of

the IEEE Transactions on Parallel and

Distributed Systems, Vol. 5, No. 3, pp. 225-246.

[12] T. Srinivasan, J. Seshadri, A.

Chandrasekhar, and J. Jonathan, “A Minimal

Fragmentation Algorithm for Task Allocation in

Mesh-Connected Multicomputers”, (2004), In

Proceedings of the IEEE International

Conference on Advances in Intelligent Systems –

Theory and Applications – AISTA 2004 in

conjunction with IEEE Computer Society, ISBN

2-9599-7768-8, IEEE Press, Luxembourg,

Western Europe.

[13] J. Ding, and L.N. Bhuyan, “An adaptive

submesh allocation strategy for two dimensional

mesh connected systems”, (1993), in

Proceedings of the International Conference on

Parallel Processing (ICPP), Vol. 2, pp. 193–

200.

[14] B. S. Yoo, and C. R. Das, “a fast and

efficient processor allocation scheme for mesh-

connected multicomputers”, (2002), in

Proceedings of the IEEE transactions on

computers, Vol. 51, No. 1, pp. 46-60.

[15] D.D. Sharma, and D.K. Pradhan, “A fast

and efficient strategy for submesh allocation in

mesh-connected parallel computers”, (1993), in

Proceedings of the Fifth IEEE Symposium on

Parallel and Distributed Processing, pp. 682–

689.

[16] Y. Zhu, “Efficient processor allocation

strategies for mesh-connected parallel

computers”, (1992), in Proceedings of the

Journal of Parallel and Distributed Computing,

Vol. 16, No. 4, pp. 328–337.

[17] Z.M. Al-Lami, “Communication Impact on

Non-Contiguous Allocation Strategies for 2-D

Mesh Multicomputer Systems”, (2011), Master

Thesis, Middle East University, Amman-Jordan.

[18] G. Chmaj, D. Zydek, and L. Koszalka,

Allocation Algorithms Problems in Mesh-

Connected Systems, (2004).

[19] A. Kelly, and J. D. William, “Migration in

single chip multiprocessors”, (2002), in

Proceedings of the IEEE Computer Architecture

Letters, 1.

[20] M. Kandemir, and G. Chen, “Locality-

aware process scheduling for embedded

MPSoCs”, (2005), in Proceedings of the Design,

Automation and Test in Europe Conference

(DATE), pp. 870–875.

[21] S. Bertozzi, A. Acquaviva, D. Bertozzi, and

A. Poggiali, “Supporting task migration in multi-

processor systems-on-chip: a feasibility study”,

(2006), in Proceedings of the Design,

© 2015, IJOCIT All Rights Reserved Page 755

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Mahnaz Rafie

August 14, 2015

Automation and Test in Europe (DATE), Vol. 1,

pp. 15–20.

[22] B. Goudarzi, and H. Sarbazi-Azad, “Task

migration in mesh NoCs over virtual point to

point connections”, (2011), in Proceedings of the

19th Euromicro International Conference on

Parallel, Distributed and Network-Based

Processing (PDP), pp. 463–469.

[23] N.C. Wang, and T.S. Chen, “Task migration

in all-port wormhole-routed 2D mesh

multicomputers”, (2004), in Proceedings of the

Seventh International Symposium on Parallel

Architectures, Algorithms, and Networks, pp.

123–128.

[24] T. S. Chen, “Task migration in 2D

wormhole-routed mesh multicomputers”, (2000),

in Proceedings of the Journal of Information

Processing Letters, Vol. 73, No. 3-4, pp. 103–

110.

[25] L. K. Goh, and B. Veeravalli, “Design and

performance evaluation of combined first-fit task

allocation and migration strategies in mesh

multicomputer systems”, (2008), in Proceedings

of the Journal of Parallel Computing, Vol. 34,

No. 9, pp. 508–520.

[26] S. Bani-Ahmad, “On Improved Processor

Allocation in 2D Mesh-based Multicomputers:

Controlled Splitting of Parallel Requests”,

(2011), in Proceedings of the 2011 International

Conference on Communication, Computing and

Security (ICCCS'11), pp. 204-209.

[27] G. L. Kee, “Design and performance

evaluation of migration-based submesh

allocation strategies in mesh multicomputers”,

(2005), Master Thesis, National University of

Singapore.

Authors Profile

Akram Reza received her B.Sc. in

Computer Engineering from Azad

University of Ghazvin, Iran, MSc in

Computer Architecture in Science and

Research Branch of Islamic Azad

University (SRBIAU), Tehran, Iran. She

is currently a PhD candidate in

Computer Architecture in SRBIAU. Her

current research interests include

network on chips, sensor networks, and computer architectures.

Mahnaz Rafie was born in Ahvaz,

Iran. She received the B.Sc. degree in

computer engineering from Allameh

Mohaddese Noori Institute of Higher

Education, Iran, in 2006, the M.Sc.

degree in Computer Architecture from

Azad University of Arak in 2011. She

is currently a Ph.D. candidate in

Computer Architecture at Department

of Computer Engineering, Science and Research Branch, Islamic

Azad University, Tehran, Iran. Since 2013, she has been with the

Department of Computer Engineering, Islamic Azad University,

Ramhormoz Branch. Indeed, she is a member of young

researchers club since 2010 till now. Her current research

interests include Network on Chips, Sensor Networks, Machine

Learning and Computer Architectures.

